
Ouster 3D センサーを用いたライダーマッピング

2019 年４月 1 日 DANIEL LU

ライダーセンサーを用いてＨＤマップを作成する

ライダー技術を使った最良の使用例の 1 つはマッピングです。ライダーがあれば、身の回

りのあらゆる物から 3D モデルを作り出すことが出来ます。

3 台の OusterＯＳ-１を使って象徴的なサンフランシスコのフェリービルディングをスキャンする

（ビデオは、https://www.ouster.io/blog-posts/2019/3/29/lidar-mapping-with-ouster-3d-sensors）

ＳＬＡＭ(Simultaneous localization and mapping)を使ってＨＤマップを作成する

世界を 3D マップする際に必要なことはすべてにおいて、異なる場所で撮られたライダー

スキャン・データを合成（位置合わせ）することです。しかし、スキャンの位置合わせのプ

ロセスは、それほど容易ではありません。これは、ライダーが、車のような移動するプラッ

トフォーム上に設置されている場合に、特に難しいと言えます。

ライダーマッピングは過去、高精度のＧＰＳ慣性航行システム（INS）を含む高額なリグ（装

置）に依存していました。GPS INS で計測された位置および方向を用いて、ライダー点群

の位置合わせをおこなってきました。最近の GPS INS システムは非常に優秀です。--リア

ルタイムキネマティクス（RKT）付きの地上局修正信号のような技術を用いて、GPS INS

システムは位置を数㎝の精度で正確に示すことが出来ます。これは、数十メーターでオフに

なってしまうかもしれない携帯電話のような安い GPS ユニットに比べて、はるかに優秀と

言えます。残念ながら良い GPS INS システムは非常に高価です。しばしば、数百万円する

ことがあります。

Ouster では、高価な GPS INS システムをマッピングには使用しません。OusterＯＳ-１

の何倍もする GPS INS システムを購入することは、導入の際のＯＳ-１のコスト上の有利

性を無駄にしてしまいます。Ouster はそのかわりに、ライダーデータ自体を位置合わせに

使います。これは、simultaneous localization and mapping (SLAM)と呼ばれ

る技術です。これまでの コンピュータで は、ライダーデータを SLAM で実行さ

せるのに十分 に速く処理できませんでした。しかし、SLAM 技術の最近の発展

により、コンピュータハードウェアの高速化と同様に、現在これを行うことが

可能になりました。

SLAM の原理は以下の通りです。センサーデータの最良の条件は、最もシンプルなもので

す。そして、センサーデータの最もシンプルな解釈は、全てが位置合わせされた時です１。

ど っ ち が よ り シ ン プ ル で し ょ う か ： 3 つ の サ ー ク ル 、 あ る い は 1 つ の サ ー ク ル ？

どのように、ライダーデータの位置合わせを行なうか？

ポイントの位置合わせ

ほとんどのロボティクスアルゴリズムは、2 つのステップに要約できます。まず、損失関数

（loss function）あるいは、目的関数（objective function）と呼ばれる関数を定義しま

す。これは、うまくいっていない時に、大きな値を取り、うまくいっている場合は小さな値

を取ります。次に、上述の関数が最小化されるように状況を調整します。

ライダーの 2 つの点群データを位置合わせするために、以下のように目的関数を定義しま

す。動かない現場シーン（static scene）を計測した点群Ｓに対して位置合わせを行うため

に、動きのある現場シーンを計測した点群Ｍを移動することを考えます。Ｍの全てのポイン

トに対して、Ｓの最近接のポイントを見出すことが出来ます。そして、目的関数は、Ｍの各

ポイントとその対応するポイントの距離の 2 乗の総和です。点群Ｍを回転したり、並進（平

行移動）させたりして、目的関数を最小化することを試みます。目的関数は、Levenberg–

Marquardt ２のような非線形最小自乗ソルバーの一種を用いて最小化できることがあり

ます。ここで、最適化変数は、点群Ｍの回転と並進です。3D 上では、回転と並進は、合計

で 6 自由度を持ちます。

コスト関数を最小化した後、点群Ｍは移動されます。これにより、対応する最近接ポイント

が変更になるかもしれません。これに対処するため、最近接ポイントが変わらなくなるまで、

この手順を繰り返します。このアルゴリズムは、iterative closest point (ICP)と呼ば

れます。

移動式車両やロボットでは、スムースに移動し、どこにいるかをうまく予測できるので、

closest point をうまく適用できると期待できます。初期の最近接ポイントは、

最適化の後でも、最近接ポイントのまま残る可能性が高いのです。

実際には、ライダーのポイントは厳密に、互いに、直接的に相対しているわけではありませ

ん。そのかわり、ライダーは、内在する物理的サーフェスからサンプルポイントをスキャン

します。これを考慮しながら、point-to-plane ICP を使用できます。1 つの最近接

ポイントを探す代わりに、幾つかを探し、それらのポイント を 平面フィッティ

ングします。そして、ポイントペア間の距離を最小化する代わりに、ポイント

と平面間の距離を最小化します。

一般化 した ICP、surfels を用いた方法、NDT(Normal Distributions Transform)

のような他の進んだ方法も存在します 。これら 3 つは、ポイント近傍のジオメ

トリを記述するのに多変量正規分布を用います。

他のセンサーの取り込み

全ての OusterＯＳ-１は、内蔵慣性計測装置（ＩＭＵ）が装備されます。これは、どのスマ

ートフォンにも内蔵しているような類似した低価格のセンサーです。高精度 INS ほど精度

はありませんが、にもかかわらず、信じられないほど役立ちます。

ポイントの位置合わせと同様に、同じ方法で、IMU データを取り込むことが出来ます。ま

ず、目的関数を作成して、慣性計測間（回転速度と並進加速度）の違いを評価します。次に、

この目的関数を最小化するために、状態を最適化します。

最終的には、これら様々な目的関数を 1 つの大きなものに統合します。これは、tight

coupling と呼ばれます。一般的に、センサーの数が多ければ、その分良好になります。

3 つのＯＳ-１ライダーセンサーを使ってサンフランシスコのロンバード街をスキャンする

実際のパフォーマンス

OusterOS-1 は 100 万ポイント/秒以上の出力を行い、最速のセンサーの 1 つです。これ

は、マルチビームフラッシュライダーデザインを採用したため実現しています。残念なこと

に、解像度を大きくすると、計算上の複雑さの問題が大きくなります。

我々の SLAM アルゴリズムは、1 台のデスクトップコンピュータ CPU で、同

時に、１つだけではなく、3 つもの OusterOS-1 デバイスをリアルタイムで操

作でき ます。これは特筆に値します。

その秘密は、目的関数に対して全てのポイントを考慮せず、最も考慮すべきも

の中から 一部のみを考慮することです。これは、特徴抽出と呼ばれ、最も考慮

すべきポイントは特徴点と呼ばれます。

特徴を抽出する 1 つの方法は、点群の最も平坦な部分のポイントを見つけることです。前

述のとおり、１つの目的関数の方策として、point-to-plane ICP があります。直感

的に、平面に良くフィットするポイントは、平面自体にあるとわかります。 ポ

イントの局所領域において、主成分分析を行うことで、全てのポイントに対す

る平坦さの指標を計算することが出来ます。そして、均一なポイントの分布を

得るために、互いに近接しすぎる 2 つのポイントが存在しないという前提

で、およそで言えば、千程度の最良の平坦なポイントを保持することが出来ま

す。

形状的な特徴抽出とは対照的に、画像ベースの特徴抽出法と併せて、ライダー

強度を使用することも可能です。Ouster OS-1 が、2D カメラ似の画像を取

得できるという事実を利用して、スーパーポイントのような深層学習（ディー

プラーニング）に基づく特徴抽出を利用できます。これにより我々のアルゴリ

ズムはより汎用的になります。例えば、形状 面の特徴抽出は、全ての平面が同

じ方向を向くスムースなトンネルで失敗するかも知れません。しかし、トンネ

ルの壁のテクスチャに起因する視覚的な特徴は存在します。

SLAM に対する特徴抽出としてス ー パ ー ポ イ ン ト が 使 用 さ れ る こ と が あ り ま す 。

連続時間

従来の SLAM アルゴリズムは、1 つのフレームを次のフレームと位置合わせを

行います。しかし、実世界 ではほとんどのセンサーは、 適切な 速度では 、個々

のフレームを出力しません。例えば、慣性計測ユニットは、1000Hz でデータ

を出力するかも知れませんが、1 秒に 1000 回も、車両の位置を更新する こと

は現実的ではありません。Ouster OS-1 は、より速い速度で出力を行います：

1 秒の間に、20,480 回ごと、64 ポイントのグループを出力します。言い換え

れば、各 2048×64 のフレームが、1/10 秒の間に広がっていきます。ここで

は、ピクセルの各 コラムはわずかに異なるタイムスタンプを持ちます。

ライダーベースの SLAM に対する以前の方法は、単に、データの 0.1 秒の時間

差を使ってフレーム間での点群位置合わせを おこなってきました。高速道路の

速度では、この時間では、車両は 3m 進み、点群に歪みを生じるかもしれませ

ん。このため、この種の方法では、位置合わせの前に点群を“de-warp（平坦

化処理）”するため、ホイールオドメトリのような外部センサーを使用する こと

があります。ホイールオドメトリは、ライダー計測ほど正確ではないため、そ

の平坦化は決して完全ではありません。そして、不正確な結果になりがちです。

Ouster では、異なる速度で何とか稼働するマルチ高周波センサーに対応する

めに、連続時間的手法を採用しています。点群の全てのポイントを同時に収集

したかのように見せるため 点群全体を平行移動したり回転したりする方式に代

わって、Ouster は、車両の軌跡を時間の連続関数として扱います。

連続する軌跡を扱うには、2 つの主要な方法があります。最初のものは、ガウ

ス過程（ここではその詳細には触れません）のような、ノンパラメトリックな

方法です。 第二は、より一般的なもので 、軌跡をスプライン関数でパラメータ

化するものです。 よく使われるのが B-スプライン 3 次関数で 、コンピュータ

グラフィクス業界において多くの用途が見受けられます ３。B-スプライン 3 次

関数を用いて、およそ 0.1 秒間隔離れた時系列的に連続するスプラインノット

を保存することが出来ます ４。各ノットの値は 6 次元になります：回転と並進

の組み合わせです。そして、任意の時刻のなす軌跡は、最近接の 4 ノットの重

み付け総和になります ５。この方法を用いて、 1 秒ごとに数千ではなく、10 の

変数のみによる合理的な変数最適 定量化 を行うことが出来ます。同時に運動に

よる歪みは問題でなくなります。

最適化に関しては、2 つのフレームを互いに位置合わせするのではなく、例え

ば、0.5 秒 の間で“移動するウィンドウ”内の全てのポイントを考慮します ６。

ウィンドウは 0.1 秒ごとに前進（スライド）します。直前の 0.5 秒の全てのポ

イントのことを考慮してください。それぞれに対して、空間的な最近接点を幾

つか見出すことが出来ます。ただし、時間的にあまり近接しているポイントは

ないとします。 これにより依然と同様に最小化できる距離のセットを得ること

が出来ます。現在では 、す べての 点群の回転と並進を更新する代わりに、関連

する各ノットを代用し 更新しています。その メリットとして、B-スプライン 3

次関数は微分可能なので、当然、IMU 目的関数を導き出すことが出来ます。車

両軌跡の微分不可能な数式表現を用いる場合、これは チャレンジング（有効に

なりうる）かも知れません。

ループを閉じる

上記では、直近の 0.5 秒のスライドウィンドウを用いた軌跡の評価について説

明してきました。しかし、高精度センサ ーを用いた高機能 SLAM アルゴリズム

であっても、結果として生じるランダムな不確実性の 累積の影響を受けやすい

と言えます。例えば、この方法で見出された推測軌跡は、車両の真の軌跡から、

どうしても僅かにドリフトを生じます。 結果として、 非常に大きなループで移

動する場合、車両が実際に正確にスタート地点に戻ってきたとしても、車両の

推測軌跡は同じ地点で終了 しない可能性があります。 これは、ループ閉じ込み

問題として知られ てい ます。

Loop closure の問題はまだ活発に研究の行われている分野です。Ouster では、

位置推定とラフな位置合わせに高速フーリエ変換 に基づく技術を道いて Loop

closure の最先端のソリューション を提供できるよう取り組んでい ます。その

場合 、大きな点群の位置合わせのバッチ 最適化処理が実行され、複数の車両か

ら、シームレスで、1 つの 3D モデルへ、データのフュージョンが行われます。

バッチ最適化は完全にコンテナ化され 、クラウド ・インフラ上で実行され、拡

張性に富むよう設計されてい きます。

その結果として、簡潔明瞭な詳細な 3D マップが得られます。 より多くの車両

が同じ領域を走査すれば、より鮮明で高精度 なデータになります。

結論

大規模な 3D マッピングは容易ではありません。Ouster は、より大きなスケールで、より

高い解像度で、そして、どこよりもより低コストで、マッピングを実現します。Ouster の

ソフトウェア重視のマッピング戦略は、高精度 GPS システム、ホイールオドメトリ、高価

なジャイロスコープの必要性を否定します。さらに、Ouster OS-1 のマルチビームフラッ

シュライダーデザインは、高密度点データを出力できる他のどのセンサーよりも非常に低

価格、小型、軽量です。これは、Ouster のマッピングシステムが、ドローンであれ、車両

であれ、ロボットであれ、あらゆるプラットフォームに、容易かつ廉価に展開可能なことを

意味します。

１ A po int c loud reg is tra t ion object ive funct ion may be shown to be equ iva lent to

entropy , as s een in sec t ion 2 .2 of Ts in , Y . , & Kanade, T . (2004 , May) . A corr e la t ion -

based approach to robust po in t s et reg is tra t ion. In European conference on com puter

v is ion (pp . 558 - 569) . S pr inger , B er l in , H e ide lberg .

２ ht tps :// en.w ik iped ia .org/w ik i/L evenberg%E2%80%93Marquardt_a lgor ithm

３ P iecewise l inear funct ions and Herm ite sp l ines are a lso popu lar

４ ノ ッ ト の 間 隔 は 、 車 両 の 運 動 状 態 に 依 存 し ま す 。 車 両 の 速 度 が 、 0.1 秒 の 間 に 大 き く 変 わ る こ と

は あ り そ う も あ り ま せ ん 。 ま た 、 ノ ッ ト を 追 加 す る こ と は 、 計 算 上 も そ の 分 高 価 に な り ま す 。 一 般

に 、 ノ ッ ト 数 の 3 乗 に 比 例 し て 時 間 も 必 要 に な り ま す 。

５ こ の 場 合 、“ 総 和 ” に は 、 リ ー 群 の 数 学 機 械 を 必 要 と し ま す 。 3D の リ ジ ッ ド 変 換 は 、 非 ユ ー ク

リ ッ ド で あ る 特 殊 ユ ー ク リ ッ ド 群 で あ る か ら で す 。

６ 最 適 化 ウ ィ ン ド ウ が 長 く な る ほ ど 、 結 果 は 高 精 度 に な り ま す 。 ロ ボ テ ィ ク ス 用 途 に 関 し て は 、 低

遅 延 の 車 両 の 位 置 、 方 向 評 価 も 重 要 に な り ま す 。

